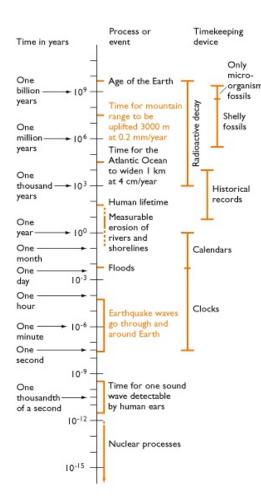
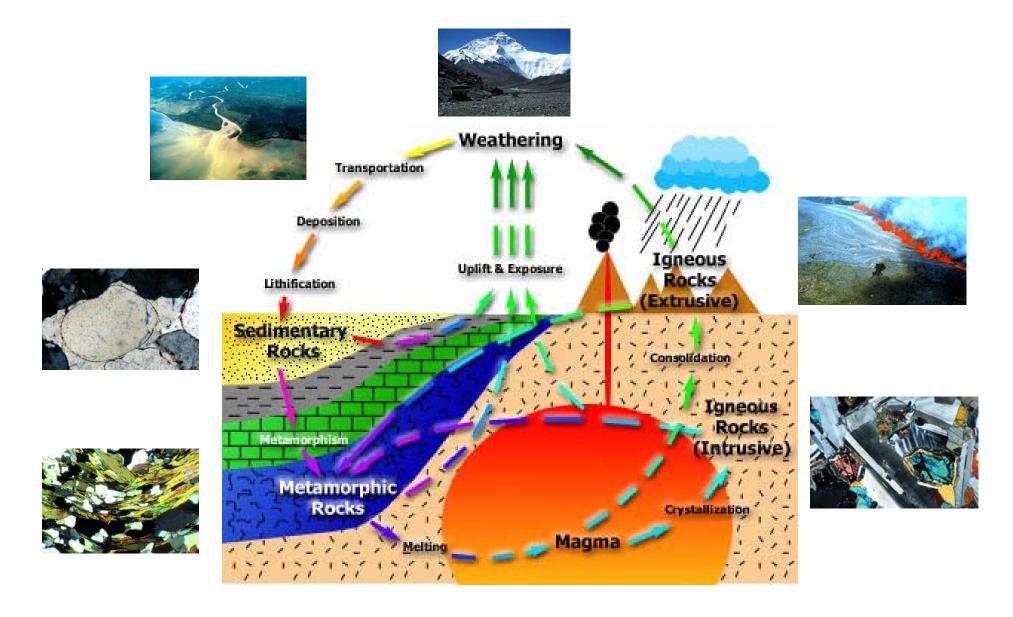

ALLEGHENY COLLEGE DEPARTMENT OF GEOLOGY STUDENT HANDBOOK

This handbook is designed as a resource for all geology majors and minors. The material contained in the handbook includes foundation principles and topics that are learned in introductory geology courses (e.g., Physical and Environmental Geology, Historical Geology). Each geology student is expected to be familiar with this material for each of their upper level geology courses.


ALLEGHENY COLLEGE DEPT. OF GEOLOGY GEOLOGIC TIME

The age of the Earth is about 4.65 billion years which represents geologic time. This is a vast amount of time to comprehend – the spiral diagram to the right is useful for understanding the relative proportion of geologic time compared to known events.

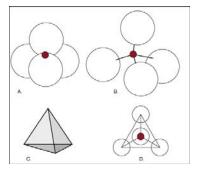


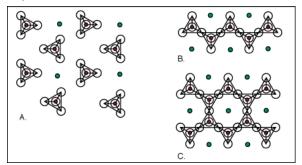
The geologic time scale is a convenient way subdivide the events and ages of rocks that were formed throughout Earth history. This scale covers only about 12% of geologic time in detail (from the present back to about 600 million years). We know much less about events and rock units that are older than 600 million years, so that part of the time scale is not subdivided. Another facet of geologic time is that different geologic place at processes take different rates. For example, volcanic eruption is an instantaneous event (hours to days) but uplift of a mountain takes millions of years (at rates of a few mm per year).

Earth's Lithosphere System – Rock Cycle

ALLEGHENY COLLEGE DEPT. OF GEOLOGY MINERALS

A mineral, by definition, must satisfy five conditions:

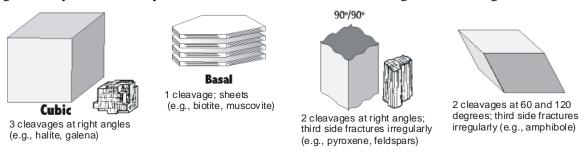

- 1. It must be naturally occurring.
- 2. It must be inorganic.
- 3. It must be a solid element or compound.
- 4. It must have a definite composition.
- 5. It must have a regular internal crystal structure.


COMMON ROCK-FORMING MINERALS

The silicate group of minerals are the most abundant in the Earth's crust. Of the silicate minerals, 9 types are most common among all the rock types. In addition, calcite and dolomite are relatively abundant rockforming carbonate minerals.

	Mineral	Chemical Composition	
		(simplified for some mineral groups)	
Silicate Minerals	Quartz	SiO ₂	
	K-feldspar (orthoclase)	KAlSi ₃ O ₈	
	Plagioclase feldspar (2 end-members)		
	Albite	NaAlSi ₃ O ₈	
	Anorthite	CaAl ₂ Si ₂ O ₈	
	Mica (2 end-members)		
	Biotite	$K_2(Fe,Mg)_{4-6}(FeAl)_{0-2}Si_{5-6}O_{20-22}$	
	Muscovite	$K_2Al_4(Si_6Al_2)O_{20}(OH)_4$	
	Amphibole (includes hornblende)	(Mg,Fe,Ca)AlSiO(OH)	
	Pyroxene	(Ca,Mg,Fe)SiO _{2,3}	
	Olivine	(Fe,Mg)SiO ₃	
Carbonate Minerals	Calcite	CaCO ₃	
	Dolomite	(Ca,Mg)CO ₃	

The building block of the silicate minerals is the silicate tetrahedron made from Si and O atoms (the two most abundant elements in the Earth's crust).



ALLEGHENY COLLEGE DEPT. OF GEOLOGY MINERAL IDENTIFICATION

Minerals are identified in hand samples by their physical properties. The physical properties of a mineral are related to chemical composition and atomic structure; these properties do not change with mineral size or shape.

CLEAVAGE AND FRACTURE: how a mineral tends to break.

<u>Cleavage:</u> splitting of a mineral along planar (flat) surfaces; determined by planes of weakness in its atomic structure. The number, quality, and angles between cleavage surfaces differ between minerals. Don't confuse cleavage with crystal faces; a crystal face is an external feature and cleavage occurs throughout a mineral.

<u>Fracture:</u> irregular, rough surface along which a mineral breaks; atomic bonding is equal in all directions.

HARDNESS: resistance of a mineral to scratching; related to the strength of a minerals chemical bonds. Hardness is based upon a relative scale from 1 to 10 called the Mohs scale of hardness. (1 = softest; 10 = hardest)

<u>Hardness</u>	Index Mineral	Common Material	<u>Hardness</u>	Index Mineral	Common Material
1	Talc		5.5		Glass
2	Gypsum		6	Orthoclase	
2.5		Fingernail	7	Quartz	
3	Calcite		8	Topaz	
4	Fluorite		9	Corundum	
5	Apatite		10	Diamond	
5 to 5.5	_	Knife blade			

STREAK: the color of a mineral's powder. Determined by scratching a mineral on a piece of white porcelain <u>Dark streaks</u>: mostly metallic minerals <u>Light streaks</u>: mostly non-metallic minerals

REACTION WITH ACID: carbonate minerals can be highly reactive with acid. Calcite bubbles strongly with a drop of dilute hydrochloric acid (HCl).

MAGNETISM: Some minerals are magnetic and attract a magnet (e.g., magnetite).

STRIATIONS: Fine parallel striations may be present on cleavage traces; a good example is plagioclase.

COLOR: an obvious property, but not always too useful. Color is based upon the main chemical elements of a mineral. Minerals can exhibit a wide range in color as a result of small amounts of trace elements or other minor constituents (e.g., water, carbon dioxide) – so, the same mineral can have a range of colors. For example plagioclase can range from white to dark blue, or even nearly black.

IDENTIFICATION CHART FOR SOME COMMON ROCK-FORMING MINERALS

		ION CHART		T = -
		Shows cleavage	White to cream to pink; hardness 6; cleavage two planes at nearly 90 degrees	Orthoclase (K-feldspar)
			Color varies from white to gray, dark gray-blue or reddish	Plagioclase
	Hard		brown; hardness 6, cleavage two planes at nearly 90 degrees;	Tagrociuse
	(scratches		striations diagnostic	
	glass)	No cleavage	Colorless or white, but almost any color can occur; hardness	Quartz
			7; conchoidal fracture; crystal form is hexagonal, otherwise	
			massive	
			Color green to yellow-greeen; hardness 6.5-7	Olivine
Non-metallic			Colorless, also white, gray, yellow, or red; hardness 2.5;	Halite
light-colored			perfect cubic cleavage; salt taste	~
			Colorless and transparent, white, variety of color possible;	Calcite
(Non-metallic			hardness 3; perfect rhombohedral cleavage; effervesces in dilute HCl	
minerals appear			Colorless, white, gray, greenish, yellow-brown; hardness 3.5-	Dolomite
glassy, pearly,			4; rhombohedral cleavage; powder effervesces in dilute HCl	Dolomic
satiny, etc.)	Soft (does	l	Colorless to white, gray, yellow-orange, or light brown;	Gypsum
	not scratch	Shows	hardness 2; cleavage good in one direction producing sheets;	71
	glass)	cleavage	may be fibrous or may not show cleavage	
			Pearly to greasy luster; color usually pale green, white, or	Talc
			gray; hardness 1; one direction of cleavage or massive with no	
			evident cleavage	
			Colorless to shades of green, gray, light brown; hardness 2.5-	Muscovite
			4; perfect sheet cleavage Colorless to wide range of colors (including purple); hardness	Elección
			4; perfect octahedral cleavage (4 planes)	Fluorite
			Color black; hardness 5-6; cleavage two planes at nearly 90	Pyroxene
			degrees; may or may not scratch glass	1 yroxene
		Classes	Color black; hardness 5-6; cleavage two planes at ~60 and	Ambhibole
	Hard (scratches glass)	Shows	120 degrees; may or may not scratch glass	
		cleavage	Color varies from white to gray, dark gray-blue or reddish	Plagioclase
			brown; hardness 6, cleavage two planes at nearly 90 degrees;	
			striations diagnostic	G .
			Color varies but dark red to reddish brown common; hardness 6.5-7.5; typically abundant fractures that may resemble	Garnet
			cleavage planes	
Non-metallic,		No cleavage	Color green to yellow-greeen; hardness 6.5-7	Olivine
dark-colored		Two creavage	Colorless or white, but almost any color can occur; hardness	Quartz
			7; conchoidal fracture; crystal form is hexagonal, otherwise	
			massive	
		Shows cleavage	Color dark brown to black; hardness 2.5-4; perfect sheet	Biotite
			cleavage	an t
	Soft (does		Color green to greenish black; hardness 2.5; perfect sheet cleavage	Chlorite
	not scratch		Earthy to submetallic luster; color red to red-brown; hardness	Hematite
	glass)		5-6 but apparent hardness may be as low as 1; streak red	Tiematite
		No cleavage	Earthy luster; color yellow, yellow-brown, brownish-black;	Limonite
			apparent hardness 1; streak brownish yellow to orange-yellow	
			Color dark gray to black; hardness 1-2; perfect sheet cleavage,	Graphite
	Black, green-black, or dark	Shows cleavage	but sometimes not well developed; greasy feel, smudges	
			fingers; streak black	C 1
			Color shiny lead-gray; hardness 2.5; perfect cubic cleavage (3	Galena
			directions); streak lead-gray Color black; hardness 6; streak black; strongly magnetic	Magnetite
Metallic luster	green streak		Color brass-yellow; goldish-yellow; hardness 6-6.5; streak	Pyrite
(shiny, opaque)			greenish or brownish black; cubic crystals with striated faces	1 11100
			common (but no cleavage)	
	Red streak	No cleavage	Color steel-gray; hardness 5-6; streak red-brown	Hematite
	Yellow,		Color yellow-brown to dark brown, may be almost black;	Limonite
	brown, or		hardness 1-6; streak brownish-yellow to orange-yellow	
	white streak			

ALLEGHENY COLLEGE DEPT. OF GEOLOGY ROCK CLASSIFICATION TABLES

	Igneous Rocks		
Texture	Light-colored (felsic) Quartz, orthoclase, biotite, muscovite	Intermediate Hornblende, plagioclase, quartz, biotite	Dark colored (mafic) Pyroxene, plagioclase, olivine
Coarse-grained (phaneritic)	Granite	Diorite	Gabbro
Fine-grained (aphanitic)	Rhyolite	Andesite	Basalt
Glassy	Obsidian		
Highly vesicular	Pumice		Scoria
Fragmental	Pyroclastic: tuff (≤ 2mm grains); tuff-breccia (> 2 mm grains)		

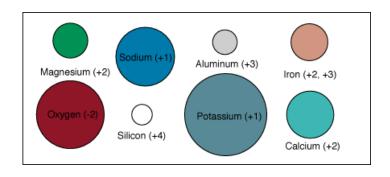
Porphyritic: Scattered macroscopic minerals (**phenocrysts**) in a matrix (**groundmass**) of microscopic minerals.

Clastic Sedimentary Rocks				
Grain Size	Rock Type			
> 2 mm (gravel)	Conglomerate (rounded grains) Breccia (angular grains)			
0.062 to 2 mm (sand; grains clearly visible)	Sandstone Quartz sandstone (mostly quartz grains; tan color) Arkose (>25% feldspar; typically red-brown color)			
0.004 to 0.062 mm (silt; feels slightly gritty; grains barely visible with hand lens)	Siltstone			
<0.004 mm (mud; feels smooth, not gritty)	Shale (mudstone is mix of mud and silt)			
Chemical and Biochemical Sedimentary Rocks				
Texture/composition	Rock Type			
Coarse to fine crystalline; CaCO ₃ (reacts with acid) Contains fossil fragments Massive, very fine-grained, usually gray	Limestone (general name) Bioclastic or fossiliferous limestone Micrite			
Coarse to fine crystalline; cubic cleavage; gray to red; salt	Halite (rock salt; NaCl)			
Soft (hardness <2.5), light colored; rhombic cleavage	Gypsum			


Foliated Metamorphic Rocks					
Texture (type of foliation)	Rock Type	Relative Metamorphic			
		Grade			
Distinct compositional banding; typically alternating light and	Gneiss	High grade			
dark layers		↑			
Parallel alignment of platy minerals (micas)	Schist				
Very closely spaced fractures; alignment of chlorite; green,	Phyllite				
shiny surfaces		↓			
Very closely spaced fractures, not shiny, gray to green	Slate	Low grade			
Non-Foliated Metamorphic Rocks					
Crystalline, light colored, comprised of quartz	Quartzite	Typically contact			
Crystalline, light colored, comprised of calcite	Marble	metamorphic (high temperature relative			
Crystalline, fine-grained, dark colored, hard and dense	Hornfels	to pressure)			

ALLEGHENY COLLEGE DEPT. OF GEOLOGY EARTH LAYERS AND WHOLE EARTH STRUCTURE

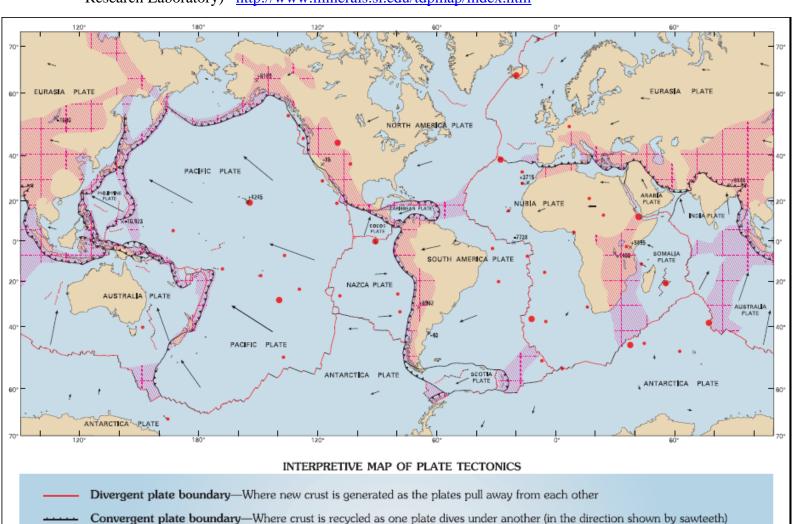
Geology students should know the definitions and characteristics (chemical and physical) of the following parts of "whole Earth structure":


- Crust
- Mantle
- Core
- Lithosphere
- Asthenosphere

Earth's Crust, Lithosphere, and Asthenosphere

Average Composition of Earth's Crust

Element (Symbol)	Weight percent		
Oxygen (O)	46.6		
Silicon (Si)	27.7		
Aluminum (AI)	8.1		
Iron (Fe)	5.0		
Calcium (Ca)	3.6		
Sodium (Na)	2.8		
Potassium (K)	2.6		
Magnesium (Mg)	2.1		


ALLEGHENY COLLEGE DEPT. OF GEOLOGY MAJOR TECTONIC PLATES OF THE EARTH

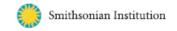
Source: Kious and Tilling, 1996, This Dynamic Earth, U.S. Geological Survey, http://pubs.usgs.gov/gip/dynamic/dynamic.html

ALLEGHENY COLLEGE DEPT. OF GEOLOGY INTERPRETIVE MAP OF PLATE TECTONICS

Source: This Dynamic Planet (U.S. Geological Survey, Smithsonian Institute, U.S. Naval Research Laboratory) http://www.minerals.si.edu/tdpmap/index.htm

- Transform plate boundary—Where crust is neither produced nor consumed as plates slide horizontally past each other

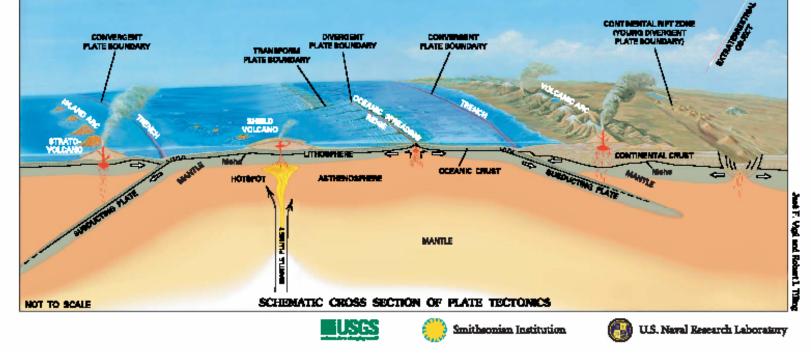
Selected fossil boundary—Former plate boundary, now inactive; evidence that plate boundaries are not permanent


Diffuse boundary zone—Broad belt in which deformation occurs over a wide region (from Gordon, 2000); may encompass one or more smaller plates

Selected hotspots—Larger symbol indicates major hotspot; smaller symbol indicates minor hotspot

Plate motion—Length of arrow is roughly proportional to the rate of plate motion (longer=faster; see main map for details)

Elevation—Highest (+) and lowest (-) points, in meters, on four largest continents and in two oceans



ALLEGHENY COLLEGE DEPT. OF GEOLOGY PLATE TECTONIC BOUNDARIES

Geology students need to know the three categories of plate boundaries: convergent, divergent, and transform. In addition, they should understand the variations of these types of boundaries and the associated rock-forming processes of each boundary.

Source: This Dynamic Planet (U.S. Geological Survey, Smithsonian Institute, U.S. Naval Research Laboratory) http://www.minerals.si.edu/tdpmap/index.htm